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A B S T R A C T   

For cardiopulmonary auscultation using electronic stethoscopes, signal quality is a key point. During signal 
acquisition various background sounds may be inevitably captured, severely degrading the auscultation signal 
quality. In the existing auscultation denoising methods, conventional adaptive noise canceller (ANC) approaches 
or shallow-layer artificial neural networks were used, while advanced noise cancellation methods still need to be 
developed to fulfill real auscultation requirements. In this paper, we propose a novel denoising method for 
cardiopulmonary auscultation enhancement, which is a two-stage approach with a cascade of ANC and deep 
neural networks (DNNs). In the first stage, the ANC provides coarsely denoised auscultation signal and estimated 
interference. In the second stage, a DNN termed the dual-channel interactive noise cancellation network (DINC- 
Net) is proposed, which exploits both the coarsely denoised auscultation signal and the estimated interference. 
The DINC-Net consists of two deep encoders extracting features of dual-channel inputs separately, one dual- 
channel interactive denoising module generating a denoising mask, and one deep decoder giving the denoised 
output. The performance of the proposed method is evaluated through synthetic data generated using two public 
heart/lung sound databases, and the great promotion in normalized covariance measure (NCM) and frequency- 
weighted segmental signal-to-noise ratio (fwSNRseg) has been verified, compared to the existing methods. An 
online noise cancellation prototype is further developed on an electronic stethoscope, and the signal quality 
promotion is shown on healthy subjects as well as aortic stenosis patients.   

1. Introduction 

The electronic stethoscope, as a non-invasive diagnostic instrument, 
has the advantage of flexibly accessing, recording, and analyzing the 
physiological acoustic signals from the human body, including cardiac 
and respiratory sounds [1]. Physicians can assess the cardiopulmonary 
status of a patient by analyzing the information embedded in ausculta-
tion signals via various means. How to aquire high-quality auscultation 
signal is of great importance in designing an electronic stethoscope, 
while in real applications various unpredictable interferences may 
severely deteriorate the auscultation quality [2]. Among these in-
terferences, the ambient noises, widely existing in physician’s or pedi-
atrician’s offices, occupied the principle position in the causes of 
auscultation signal corruption. 

As noise contamination would limit the clinical application value of 
auscultation signals, it is essential to develop and integrate an efficient 
noise cancellation algorithm in the electronic stethoscope. Several 
monaural denoising methods have been proposed to address this prob-
lem [3–8]. Wavelet-domain analysis was involved in [3], and thresholds 
were set to attenuate wavelet coefficients corresponding to noise for 
cardiac sound signal enhancement. Empirical mode decomposition 
(EMD) was utilized in [4] for denoising and analyzing electrocardio-
gram (ECG) and cardiac sound signals. A short-time Fourier transform 
(STFT) based semi-automatic filtering technique was introduced in [5] 
for attenuating noise ingredients from cardiac sound signals. In [6], the 
study showed that ensemble EMD (EEMD) achieved better performance 
than wavelet analysis when applied in denoising cardiac sound signals. 
A combination of wavelet packet transform (WPT) and singular value 
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decomposition (SVD) scheme was proposed to eliminate noise in cardiac 
sound analysis and validation was performed on a normal/pathological 
cardiac sound dataset [7]. An integration of EMD, Hurst analysis and 
spectral subtraction was used to denoise the respiratory sound in [8], 
and the used data set included 30 chronic obstructive pulmonary disease 
(COPD) and 30 healthy lung sounds. 

The monaural auscultation denoising methods may show advantages 
in promoting cardiac sound or respiratory sound signal quality, while 
there are still two issues left to be addressed. First, these studies aimed at 
denoising either cardiac sound or respiratory sound, by employing the 
empirical knowledge of the difference between objective signal and 
noise at some features. However, in realtime implementations the signal 
to be denoised is usually not single-modal, e.g. a mixture of cardiac 
sound and respiratory sound, and unpredictable and complicated pat-
terns of pathological cardiopulmonary sounds may increase the diffi-
culty of denoising. Second, due to the variability of environments, it’s 
hard to grasp and utilize all information of nonstationary ambient noises 
via only monaural processing, where auscultation signals are contami-
nated by ambient noises at time domain as well as at frequency domain. 
Introducing an extra reference recording of ambient noise picked up by 
an auxiliary microphone was a promising choice to address the issues 
mentioned above. The raw recording at the main channel of electronic 
stethoscope can be deemed as a mixture of pure auscultation signal with 
noise component in an unknown way, where the mixed noise component 
is the result of passing the ambient noises recorded by the auxiliary 
microphone through an unknown system. 

As a class of adaptive filter, adaptive noise cancellers (ANCs) were 
conventional choices for auscultation denoising on two-microphone 
setup. ANC can adaptively identify the unknown system and then 
perform noise suppression. The classical least mean square (LMS) al-
gorithm was introduced to enhance lung sound signals in [9]. As 
normalized least mean square (NLMS) algorithm [10] can provide both 
fast convergence speed and low computational load, it was applied in 
[11] to obtain purified lung sounds, where cardiac sound was deemed as 
noise to be suppressed. In [12], recursive least squares (RLS) ANC was 
employed to reduce cardiac sound from lung sound recordings. In [13], 
a spectral subtraction algorithm was designed at frequency domain to 
improve the auscultation signals’ quality. 

ANC or spectral subtraction can be deemed as a single-stage 
denoising approach, in which only a simple linear system is assumed 
for modeling the unknown system and the manner of signal mixture. 
Intuitively such a single-stage method, with limited mapping capability, 
may not handle the complicated denoising problem well in a highly 
nonstationary noise environment. Since data-driven deep-layered arti-
ficial neural networks (ANNs) can automatically learn high-level rep-
resentations from the input signal, numerous deep-learning-based 
methods are emerging for the analysis of biomedical signals [14–17]. 
For instance, transfer learning [18] was used to address the low resource 
problem of biomedical signals. Based on well trained deep learning 
models, it requires only a small size of dataset for fine tuning the high 
layers of the trained models to achieve excellent performance in specific 
tasks, e.g. medical image processing and analysis [19]. More recently, 
the advantages of multi-stage methods over single-stage methods in 
many tasks have been revealed [20,21], where data-driven ANNs were 
involved with ANCs for speech or acoustic signal enhancement. The 
similar idea was introduced into the task of separating cardiac sound 
signal from lung sound signal, where a fully connected ANN with one 
hidden layer was integrated into an adaptive line enhancer (ALE) system 
[22]. Nevertheless, it is still interesting to study how the multi-stage 
approach would perform at auscultation signal denoising, and learn 
the suitable architecture of ANN for this problem. 

In this paper, we propose a novel noise cancellation method for 
cardiopulmonary auscultation enhancement, which is a two-stage 
approach containing a cascade of conventional ANC and deep neural 
networks (DNNs). The first stage consists of an ANC based on the NLMS 
algorithm (ANC-NLMS), which is used to provide coarsely denoised 

auscultation signal and estimated interference. For the second stage, a 
DNN named dual-channel interactive noise cancellation network (DINC- 
Net), is established to eliminate residual noise and distortion. The design 
of DINC-Net is inspired by a state-of-the-art speech separation solution, 
the end-to-end fully convolutional time-domain audio separation 
network (Conv-TasNet) [23], as noise cancellation in electronic stetho-
scope can be deemed as separating clean cardiopulmonary sounds from 
noises. Compared to the Conv-TasNet, the proposed DINC-Net builds 
two deep encoders to extract features of dual-channel inputs, one dual- 
channel interactive denoising module to generate a denoising mask, and 
one deep decoder to give an ultimate denoised output. The performance 
of the proposed method is evaluated via simulation and real application 
experiments. Synthetic noisy auscultation data are generated from three 
public datasets: one cardiac sound dataset, one respiratory sound data-
set, and one noise dataset, and outperformance of our method is illus-
trated at different denoising difficulties. An online noise cancellation 
prototype based on our proposed method is applied in the electronic 
stethoscope Smartho-D2 [24], and real experiments on healthy subjects 
and aortic stenosis patients show that the proposed method significantly 
promote the auscultation signals’ quality. 

The remainder of this paper is organized as follows. The proposed 
noise cancellation method and technique details are described in Section 
2. Section 3 presents the experiment settings and Section 4 gives the 
results. Finally, discussions and conclusions are given in Section 5 and 
Section 6, respectively. 

2. Methods 

The auscultation denoising method is developed based on a two- 
microphone setup. The piezoelectric microphone on the primary chan-
nel collects the noisy cardiopulmonary auscultation signal d(t), and the 
auxiliary microphone on the reference channel picks up the ambient 
noise v(t). After active filtering and analog–digital conversion, the 
digitalized noisy cardiopulmonary auscultation signal d(n) on the pri-
mary channel is given by 

d(n) = f (s(n), h(n) ∗ v(n) ) (1)  

where s(n) is the pure cardiopulmonary sound signal, h(n) is an un-
known system function, ∗ denotes convolution operator, and f(⋅) denotes 
the unknown function that mixes the pure auscultation signal and noise 
to form d(n). The auscultation denoising objective is to output a 
denoised ŝ(n), with inputs d(n) and v(n). 

Our proposed auscultation denoising method includes two stages. In 
the first stage, an ANC based on NLMS is used to give coarsely denoised 
auscultation signal sANC(n) and estimated interference y(n). Due to the 
limitation in mapping capability of ANC for auscultation denoising, the 
second stage with a built DINC-Net, whose inputs are sANC(n) and y(n), is 
used to further attenuate the noise, reserve the informative ingredients 
of useful signal, and finally give the prediction of pure auscultation 
signal ŝ(n). The DINC-Net is believed to be endowed with the ability of 
automatically managing the underlying mechanism of noise transfer and 
signal mixture, by training with datasets considering various real sce-
narios. The main signal processing flowchart of the proposed method is 
displayed in Fig. 1. 

2.1. The first denoising stage: ANC 

The first stage ANC is a natural choice when two inputs are used for 
denoising [25]. The two inputs are the primary recording d(n) and the 
reference recording v(n), and the outputs are estimated interference y(n)
and coarsely denoised auscultation signal sANC(n), given by 

y(n) = ĥ(n) ∗ v(n) (2)  

sANC(n) = d(n) − y(n) (3) 
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where ĥ(n) denotes the transfer function of employed adaptive filter 
estimating the unknown system. 

In this paper, a K-order finite impulse response (FIR) filter is used for 
ĥ(n) and NLMS is employed to adaptively update the parameters of FIR 
filter. Hence y(n) is given by 

y(n) = ĥ(n) ∗ v(n) = w(n)Tv(n) (4)  

where w(n) is the K-element weight vector estimated for the K-order FIR 
filter, (⋅)T denotes transpose, and v(n) =

[v(n), v(n − 1), ..., v(n − K + 1) ]T. The update rule of the FIR filter’s 
weights in NLMS is given by 

w(n + 1) = w(n)+ μ⋅sANC(n)v(n)
/(

ξ + ‖v(n) ‖2
2

)
(5)  

where μ is the convergence factor, ξ is a small positive constant used to 
avoid division by zero, and ‖⋅‖2 is ℓ2-norm. The coarsely denoised 
auscultation signal sANC(n) provides a control signal and updates the 
filter’s coefficients adaptively. 

It has been shown in [26] that when the noise is additive and output 
of the adaptive filter y(n) matches the ambient noise passed through an 
FIR system well, the ANC-NLMS error output sANC(n) is the optimal es-
timate of the target signal. NLMS also brings a fast convergence rate and 
low computational complexity. However, in real applications, a simple 
FIR filter can not sufficiently model the unknown system. Even if this 
unknown system is linear, we still do not know the number of orders of 
the FIR filter. Besides, the signal mixture in noisy auscultation sound 
generation is not guaranteed to follow an additive way. Hence, it is 
suspected that some residual noise ingredients may still exist in sANC(n), 
while some useful cardiopulmonary sound components may be care-
lessly subtracted from d(n). On this account, a second stage is essential 
for the refinement of auscultation denoising. 

2.2. The second denoising stage: DINC-Net 

Conv-TasNet, a state-of-the-art audio/speech separation method, has 
been applied in tasks such as speaker extraction [27], echo suppression 
[28], and speech recognition [29]. The Conv-TasNet is a monaural 
source separation DNN, consisting of one encoder, one separation 
module, and one decoder. By using 1-D convolution, the encoder 
transforms the raw mixture waveform to a high-dimensional feature 
map, which is further multiplied by the mask generated from the sepa-
ration module. The masked feature map is ultimately decoded to give 
separated sources in the decoder using 1-D transposed convolution. 
Inspired by the monaural Conv-TasNet, our proposed DINC-Net system 
consists of two encoders, one interactive denoising module, and one 
decoder, to consider the second stage denoising refinement problem. 
y(n) and sANC(n) make up the inputs to the DINC-Net, and the final 
output ̂s(n) is the expected denoised auscultation sound result. The block 

diagram of the proposed DINC-Net is shown in Fig. 2. Compared to the 
Conv-TasNet, our DINC-Net has two main contributions. The first 
contribution is that two encoders are used to extract the features of y(n)
and sANC(n), and a deep encoder/decoder based on a stack of small- 
kernel filters with nonlinear activation functions is used to replace the 
original Conv-TasNet encoder/decoder using 1-D convolution. The 
second contribution is that we build interaction blocks from different 
feature dimensions to exchange information among different branches. 
Such an interaction scheme is specifically proposed for the two-channel 
setup, and will be proved to suppress the residual noise in the meanwhile 
of enhancing the useful signal components. Specific details about the 
DINC-Net are described as follows. 

2.2.1. Deep encoder/decoder 
The deep encoder built in our DINC-Net employs multiple convolu-

tional layers to transform each frame of the waveform to effective im-
plicit representations, and the deep decoder stacks multiple transposed 
convolutional layers to convert the implicit representations back to the 
desired waveform. 

We create two deep encoders all with I layers to extract features of 
y(n) and sANC(n). The first layer of our deep encoder is similar to that in 
the original Conv-TasNet encoder, implemented via a 1-D convolutional 
layer with N kernels to perform linear transformations of the input frame 
with L samples. A stack of 1-D dilated convolutional layers, with each 
layer having N kernels of size 3, follows the 1-D convolutional layer. The 
effctiveness of stacking dilated convolutional layers in building the 
encoder/decoder was verified in [30]. We use I − 1 dilated convolutional 
layers with exponentially increasing dilation factors 1, 2, …, 2I− 2 for two 
deep encoders, and exponentially decreasing dilation factors 2I− 2, 2I− 3, 
…, 1 for the deep decoder. As what was pointed out in [31], dilated 
convolution has been used to increase the receptive field of convolu-
tional layers and hence can efficiently extract features in temporal 
domain. A parametric rectified linear unit (PReLU) [32] is added to the 
output of each dilated convolutional layer, defined as 

PReLU(x) =
{

x, if x⩾0,
αx, if x < 0, (6)  

where α is a trainable scalar controlling the negative slope of the recti-
fied activation unit. The outputs of the two encoders are implicit rep-
resentations of sANC(n) and y(n), denoted as FS, E ∈ RT×N and 
FN, E ∈ RT×N, respectively, where T represents the feature length of 
decoder output, and N is the number of filters used in the encoder. 

The deep decoder consists of four 1-D transposed dilated convolu-
tional layers followed by one 1-D transposed convolutional layer, and 
the output is ̂s ∈ RL×1. It is easy to derive the structure of the decoder, as 
it can be deemed as the mirror image of the encoder in the sense of 
recovering the implicit representations to the original size of input 
frame. 

Fig. 1. A block diagram of the proposed two-stage noise cancellation system. ANC-NLMS is used to provide coarsely denoised auscultation signal and estimated 
interference. The Cascaded DINC-Net is established to further eliminate residual noise and distortion. 
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2.2.2. Interactive denoising module 
This module possesses of three constituent parts, named temporal 

convolutional networks (TCNs), interaction blocks, and an output-end 
block. Fig. 3 (a) depicts the diagram of the proposed interactive 
denoising module and the role it plays in the second denoising stage. 

There are R repeated TCNs in the interactive denoising module, and 
each TCN contains B 1-D Conv blocks whose dilation factors of their 
dilated convolutional layers are 1, 2, …, 2B− 1. The definition of 1-D Conv 
block is the same as that in Conv-TasNet. A 1-D Conv block has a 1 × 1 
convolutional layer and a dilated convolutional layer, with each layer 
followed by PReLU and normalization. The output of each 1-D Conv 
block includes a residual path and a skip-connection path, where the 

residual path provides the input to the next block, and the skip- 
connection paths of all blocks in the i th TCN are summed up and 
serve as the output of this TCN, denoted as FTCN

i . The input to 1-D Conv 
block is zero padded. By exploiting concatenated multi-scale feature 
maps generated by dilated convolutions with different dilation factors in 
parallel or cascade way, the TCN can achieve large receptive field size 
without increasing the size of kernels. 

Through the first stage of denoising, in sANC(n) the residual noise may 
still exist, which is related to the noise components in y(n). The inter-
action block is the key to extract cross-modality information from output 
feature maps of two encoders and feed them to the main branch. Fig. 3 
(b) shows the design of interaction block. It has three input branches, 

Fig. 2. The architecture of the proposed 
DINC-Net in the second denoising stage. Two 
deep encoders map two waveform inputs, i.e. 
coarsely denoised auscultation signal and 
estimated interference, to high-dimensional 
representations, and then an interactive 
denoising module calculates a mask for 
denoising refinement. A deep decoder re-
constructs the denoised source waveform 
from the masked features. Conv and DConv 
represent 1-D convolutional layer and dilated 
convolutional layer, respectively. TransConv 
and TransDConv represent 1-D transposed 
convolutional layer and transposed dilated 
convolutional layer, respectively. PReLU is a 
nonlinear activation function formed by 
parametric rectified linear unit.   

Fig. 3. Technical details about the proposed interactive denoising module in the second stage of denoising: (a) The flowchart of the interactive denoising module 
consisting of TCNs, interaction blocks, and an output-end block. The TCNs provide concatenated multi-scale feature maps generated by dilated convolutions with 
different dilation factors. Different colors in the 1-D convolutional blocks in TCNs indicate different dilation factors. The interaction block fuses the information of 
two encoders’ output feature maps and TCN’s outputs in the previous level. The aggregated features are processed to generate the final mask through output-end 
block; (b) The architecture of an interaction block. It has three input branches, including the output of the ith TCN for the main input branch and two auxiliary input 
branches given by encoders’ outputs. Its output is fed into the following TCN. 
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including the output of the ith TCN FTCN
i for the main input branch and 

two auxiliary input branches given by FS, E and FN, E. Firstly, the 
auxiliary branch inputs are normalized by global layer normalization 
(gLN) and then the number of channels is half reduced by 1 × 1 con-
volutional operations. Secondly, the two branches are merged by 
concatenating their channels, and the concatenated feature map further 
undergoes gLN, convolution layer, PReLU, and another gLN, to generate 
a multiplicative mask Mi that predicts the cancellation and preservation 
areas of main branch. A gain representation Gi≜FTCN

i ⊙ Mi is then ob-
tained via element-wise multiplication. Finally, FTCN

i is added to Gi to 
obtain a “filtered” version of current feature map, to be fed into the next 
TCN. This process is given by 

FI,i = FTCN
i +FTCN

i ⊙ Mi, i = 0, 1, ..., R − 1 (7)  

It can be noticed that similar interaction blocks have shown their 
effectiveness in image processing [33] and speech enhancement tasks 
[34]. 

The last constituent part is the output-end block, which gives the 
output of a mask for denoising refinement. As displayed in Fig. 3 (a), the 
outputs of all TCNs are concatenated and fed to the output-end block. A 
PReLU is first used, and then the feature dimension is reduced by 1 × 1 
convolutional operations, followed by gLN. A Sigmoid activation func-
tion is used to estimate the final mask M ∈ RT×N, with the same size as 
that of FS, E and FN, E. The implicit representation of desired signal with 
denoising refinement D is calculated by applying the mask M to the 
implicit representation of sANC(n) encoded as FS, E, i.e. 

D = FS, E ⊙ M (8)  

where ⊙ denotes element-wise multiplication. The deep decoder utilizes 
this implicit representation of D to reconstruct the waveform of final 
denoised cardiopulmonary sound signal. 

2.2.3. Training objective 
In training the proposed DINC-Net in the second denoising stage, the 

objective function is to minimize the negative scale-invariant source-to- 
noise ratio (SI-SNR) [35], which is defined as: 

SI-SNR = 10log10

(⃦
⃦starget

⃦
⃦2

2

/
‖enoise‖

2
2

)
(9)  

where starget = 〈ŝ, s〉s/‖s‖2
2, enoise = s − starget, and ŝ ∈ RL×1 and s ∈ RL×1 

are the estimated and ground truth cardiopulmonary sound signal vec-
tors, respectively. Before engaged into loss function calculation, ̂s and s 
are both normalized to ensure scale-invariance. 

3. Experimental settings 

It seems that there is a paradox when evaluating the performance of 
auscultation denoising methods, as we never know the ground truth of 
the clean cardiopulmonary sound signals. The lack of ground truth 
signal also hinders training of the proposed DINC-Net. In this paper, we 
evaluate the performance of the proposed denoising method via simu-
lation experiments as well as real electronic stethoscope application 
results. In simulation experiments, we use synthetic noisy auscultation 
data generated by combining cardiac or respiratory sound signals with 
noises, extracted from public databases. We further integrate the 
denoising function using the trained model developed based on the 
simulation data, into an electronic stethoscope Mintti Smartho-D2 
(Suzhou Melodicare Medical Technology Co., Ltd., China) [24], and 
evaluate the developed denoising prototype in realtime applications, 
including auscultation on healthy subjects and aortic stenosis patients. 

3.1. Data and evaluation metrics for simulation 

In simulation experiments, ground truth pure cardiopulmonary 

sound signals were used to generate synthetic noisy cardiopulmonary 
sound signals, to train the proposed DINC-Net, as well as to evaluate the 
denoising performances. The pure cardiopulmonary sound signals were 
extracted from two public data sources, where cardiac sound signals and 
respiratory sound signals were selected from the 2016 PhysioNet/CinC 
Challenge (PhysioNet) [36] database and the 2017 International Con-
ference on Biomedical Health Informatics (ICBHI) [37] database, 
respectively. As in these public databases the cardiopulmonary sound 
recordings were collected in uncontrolled environments, how to pick out 
and identify some recordings as “pure” ones is the key issue. We used the 
following scheme for data screening. Firstly, the cardiac sound quality 
judgment algorithm developed in [38] and the respiratory sound quality 
judgment algorithm developed in [39] were performed on PhysioNet 
and ICBHI databases, respectively, to coarsely select cardiac, respira-
tory, or mixed cardiopulmonary sound recordings that are deemed as 
being of high quality. Secondly, these coarsely selected recordings were 
further reviewed by two auscultation experts, and only the recordings 
that are judged as noise-free by both experts were reserved. The judg-
ment criterion was defined by subjective assessment: (1) No ambient 
noise can be heard; (2) The recorded cardiopulmonary sound contains 
cardiac sound, respiratory sound, or a mixture of them; (3) Data cor-
ruption by clipping distortion or friction is not present. Through this 
data screening procedure, 161 recordings from PhysioNet database and 
90 recordings from ICBHI database were finally picked out and deemed 
as pure cardiopulmonary sound recordings. 

We generated synthetic noisy cardiopulmonary sound signals by 
corrupting the pure signals with environmental sounds. The environ-
mental sounds were provided by the Diverse Environments Multi-
channel Acoustic Noise Database (DEMAND) [40] and our own noise 
dataset named as “Hospital” (including 36 audio recordings, each one of 
1-min length) collected in clinical environments. A synthetic noisy 
cardiopulmonary sound recording was given by summing the pure one 
with noise passed through an FIR system, given by 

d(n) = s(n)+
∑M− 1

m=0
h(m)v(n − m) (10)  

where h(0), h(1), ..., h(M − 1) are parameters of the FIR system, and M 
specifies the order. As in real applications the concrete form of the 
system to be identified is unknown, we used the following scheme to 
walk through probable scenarios: in generating each synthetic 
recording, M was randomly determined among 3–5, and the values of 
FIR parameters were randomly given from uniform distribution in [− 1, 
1]. Different SNR levels were covered. 

A training dataset and a testing dataset were formed by utilizing the 
pure cardiopulmonary sound and noise recordings. It is worth noting 
that the pure cardiopulmonary sound recordings used in testing should 
differ from those used in training, to address individual variability and 
reflect reasonable generalization ability. A total of 141 PhysioNet re-
cordings and 76 ICBHI recordings randomly selected out from the pure 
recordings were used for generating the training dataset, and the rest 
ones were used for the testing set. In forming the training dataset, 48 
noise recordings of DEMAND in three environments (OOFFICE, 
OHALLWAY, and SPSQUARE) and our own 36 Hospital recordings were 
used for corrupting the cardiopulmonary sounds, with 5 randomly 
chosen SNR levels, from − 5 dB to 15 dB with steps of 5 dB. The testing 
set includes 2 subsets: noise-contaminated PhysioNet recordings and 
ICBHI recordings. 5 SNR levels were considered, from − 6 dB to 6 dB 
with steps of 3 dB, most of which are different from the implementation 
in building the training set. For each testing subset, two levels of 
denoising difficulty were considered, denoted by LEVEL-E and LEVEL-D, 
corresponding to easy and difficult noise cancellation tasks, respec-
tively. In LEVEL-E, the utilized noise recordings had the same patterns as 
those used in the training set, while in LEVEL-D distinct patterns were 
used. When generating synthetic data, as the employed noise recordings 
were much longer, the noise recording was aligned with the 
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cardiopulmonary sound recording with a random starting point. The 
noise recordings were reused for 10 times in generating the training set. 
In simulation experiments, the input length of our proposed algorithm 
was fixed at 2 s, and the signal sampling rate was 8 kHz. Hence all the 
simulation data were resampled to 8 kHz and normalized, and further 
divided into 2 s segments, with 50 % overlapping. Table 1 briefly lists 
the specifications of the training/testing datasets. 

Since there was no consistent standard for auscultation denoising 
performance evaluation, we chose two existing objective quality metrics 
in audio signal processing: the normalized covariance measure (NCM) 
[41] and the frequency-weighted segmental signal-to-noise ratio 
(fwSNRseg) [42]. To reflect the audibility of the denoised signal, the 
NCM calculates a weighted signal to noise quantity ŜNRNCM

(
sp, ŝp

)
at P 

bands, given by the normalized covariance of the spectral envelopes of s 
andŝ, i.e. 

NCM(s, ŝ) =
∑P

p=1cp × ŜNRNCM
(
sp, ŝp

)

∑P
p=1cp

(11)  

where cp, p = 1, 2, ..., P are band-importance weights. P = 8 bands 
whose center frequencies follow the Bark scale in [150, 4000] Hz were 
used, and the band-importance weights setting and the calculation of 
ŜNRNCM

(
sp, ŝp

)
followed the routine given by [43]. According to [44], 

the fwSNRseg exhibits the highest correlation with subjective signal 
quality assessment. It is essentially a weighted segmental SNR at critical 
frequency bands, defined by 

fwSNRseg(s, ŝ) =
1
M

∑M− 1

m=0

∑J

j=1
wjSNR(j, m)

/
∑J

j=1
wj (12)  

where M is the total number of frames, J is the number of critical fre-
quency bands, wj is the weight at the jth band, 

SNR(j, m)≜10log10

[
|S(j, m) |

2
/(|S(j, m) | − |Ŝ(j, m) | )

2
]
, and S(j, m)

and Ŝ(j, m) represent the spectral components of ground truth pure 
cardiopulmonary sound signal and denoised output of at the mth frame 
and the jth critical frequency band, respectively. In this paper, the frame 
length was fixed at 30 ms, and J = 25 filters designed according to 
Articulation Index was used to specify the critical bands, whose weights 
followed the ones proposed in [45]. 

3.2. Data and evaluation metrics for realtime application 

The ultimate goal of designing a practical noise cancellation algo-
rithm for cardiopulmonary sound enhancement is to achieve a reason-
able online performance in real auscultation applications, with the 
proposed noise cancellation method integrated and run in an electronic 
stethoscope. To consider the adaption to realtime application and 
complicated environments, some tiny adjustments compared to simu-
lations were applied in building the online two-stage denoising proto-
type: the input data length was 0.5 s instead of 2 s, and all training sets 
and testing sets, truncated to segments with 0.5 s length, were employed 
to train the real implementation version of the proposed DINC-Net. To 
maintain the temporal continuity in the output of the developed online 
denoising prototype, cubic spline interpolation was used to bind the 0.5 
s outputs. The developed online denoising prototype was deployed in 

Mintti Smartho-D2, a CE & FDA certificated electronic stethoscope. 
Two real application scenarios were involved in performance eval-

uation. The first scenario considered auscultation on healthy subjects, 
with ambient speech interference. 10 healthy subjects, 22–25 years old, 
were recruited from Soochow University. 5 conventional cardiac 
auscultation positions were considered and each recording lasted for 
10–30 s, with sampling rate = 8 kHz. During cardiac sound recording, a 
boy and a girl was talking aloud aside. The second scenario checked the 
auscultation enhancement performance on aortic stenosis patients in 
noisy clinical environments. 33 aortic stenosis patients, including 3 
aortic stenosis levels (mild, medium, and severe) from 3 hospitals, 
participated in the experiments. All subjects or patients gave their signed 
informed consents before experiment. This study was approved by 
Ethics Committee of Soochow University (Approval No. 
SUDA20210923H02). 

In order to facilitate performance evaluation, in the development 
mode of the deployed denoising prototype, the recorded data not only 
provided the denoised result but also included the raw noisy data and 
the ambient noise collected by the two microphones. The performance 
evaluation was performed segment-wise, and the data before or after 
denoising were divided into 2 s segments. We finally obtained 567 
segments from normal recordings and 1140 segments from aortic ste-
nosis patient recordings. 

Due to the lack of ground truth pure cardiopulmonary sound, it is 
hard to use any objective metrics designed for simulation experiments to 
evaluate noise cancellation performance in real auscultation applica-
tions. In this paper, we built a discriminator, introduced from generative 
adversarial networks (GAN) [46], to automatically judge a denoised 
segment in real application as “acceptable” or “unacceptable”. The ar-
chitecture of the built discriminator is presented in Table 2. We were 
interested in inspecting how many “unacceptable” segments can be 
turned into “acceptable” by the proposed two-stage noise cancellation 
algorithm. To avoid over-optimistic assessment, a conservative 
discriminator was trained: pure cardiopulmonary sound segments used 
in simulation experiments formed the “acceptable” class, while all the 
synthetic noisy ones formed the “unacceptable” class in the discrimi-
nator training set. 

3.3. Implementation details and training setup 

In the simulations as well as the real applications, the implementa-
tions of the proposed two-stage noise cancellation approach were 
similar, where the only difference was the input size. A well-established 

Table 1 
Specifications of Training Dataset and Two Testing Datasets with Different Levels of Denoising Difficulty.  

Dataset  Noise Recordings Noise Patterns SNR (dB) Segments (2 s) 

Training dataset  84 {[OOFFICE, OHALLWAY, SPSQUARE], Hospital} [− 5, 0, 5, 10, 15] 14,823 
Testing datasets LEVEL-E 84 {[OOFFICE, OHALLWAY, SPSQUARE], Hospital} [− 6, − 3, 0, 3, 6] PhysioNet: 600 × 5 

ICBHI: 756×5  
LEVEL-D 48 [STRAFFIC, TBUS, NFIELD] [− 6, − 3, 0, 3, 6] PhysioNet: 276 × 5 

ICBHI: 504 × 5  

Table 2 
Detailed Parameter Setup for Discriminator.  

Layer Input Size Channel Kernel size Stride Dilation 

Conv 1 * 16,384 8 8 4 – 
DConv 8 * 4096 8 5 1 1 
DConv 8 * 4093 8 5 2 2 
DConv 8 * 2045 8 5 1 4 
DConv 8 * 2037 8 5 2 8 
Flatten 8 * 1011 – – – – 
Dense 8088 1024 – – – 
Dense 1024 2 – – – 
Softmax 2 – – – –  
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form of ANC-NLMS in the first stage was employed, while the advantage 
of the proposed DINC-Net would be confirmed via ablation experiments. 
The issue how to choose a reasonable order of ANC-NLMS in the first 
stage would be addressed in Section 5. We also recognized that a small 
step size of NLMS helped improving the performance of the followed 
DINC-Net performance via simulation experiments. Hence, the order 
and the step size of ANC-NLMS in the first stage were set to 4 and 0.001, 
respectively. In the implementation of the proposed DINC-Net in the 
second stage, the tradeoff between denoising performance and model 
size was considered. In each encoder/decoder employed in the DINC- 
Net, the number of convolutional layers was I = 5, the number of 
channels in each convolutional layer was N = 256, and the kernel size 
for the first convolution layer in the encoder or the last transposed 
convolution layer in the decoder was K = 16. In the interactive denoising 
module, R = 4 repeated TCNs were used, and each TCN contained B = 8 
1-D Conv blocks. In each 1-D Conv block, the kernel size was 3, and the 
numbers of channels, including those in the residual paths and the skip- 
connection paths, was 256. In the interaction blocks, the kernel size for 
the convolutional layer was 16. 

The training of the DINC-Net was implemented based on the PyTorch 
platform on a desktop equipped with two NVIDIA GeForce GTX 1080Ti 
GPUs. The Adam optimizer [47] with weight decay of 10− 5 was used, 
and the batch size was 8. The learning rate was initially set to 10− 3 and 
decreased by multiplying with 0.1 once the validation loss was not 
improved in three consecutive epochs, and the maximum number of 
epochs was 100. Specifically, if the validation loss is not improved in 6 
consecutive epochs, the training would be terminated early. The trained 
model and denoising example are shared at: https://github.com/140 
6429350/DINC-Net. 

4. Results 

4.1. Simulation results 

In this section, a full-scale validation of the advantages of the pro-
posed two-stage noise cancellation approach via experiments on simu-
lation dataset is displayed. First, ablation experiments will be carried out 
to show the necessity and effectiveness of each constituent part of DINC- 
Net. Second, quantitative evaluations of noise cancellation performance 
compared to the existing algorithms will be further performed at 
different categories of auscultation sound signals or different levels of 
denoising difficulties. 

Ablation experiments were performed to justify the effectiveness of 
deep encoder/decoder and interaction block in the proposed DINC-Net. 
To verify that both deep encoder/decoder and interaction block 
contribute to denoising process, comparisons among several noise 
cancellation algorithms were performed. As in two-stage algorithms, the 
ANC-NLMS plays the role of coarse filtering followed by the DNN-based 
signal fine-tuning, the simple ANC-NLMS serves as the baseline algo-
rithm and also the first denoising stage for 3 compared two-stage algo-
rithms. Hence, the compared algorithms include: 1) only ANC-NLMS; 2) 
passing the single output of ANC-NLMS sANC(n) to a Conv-TasNet; 3) 
passing the two outputs y(n) and sANC(n) to DINC-Net without deep 
encoder/decoder; 4) passing the single output sANC(n) to DINC-Net 
without interaction block. The LEVEL-E datasets including all SNRs 
and categories of auscultation sound signals were involved to calculate 
the evaluation metrics. The NCM and the fwSNRseg averaged on LEVEL- 
E datasets for the proposed algorithm as well as the 4 compared ones are 
summarized in Table 3, where the model sizes are also provided. It can 
be observed that the proposed algorithm achieved the highest values of 
averaged NCM and averaged fwSNRseg, and all two-stage algorithms 
showed superior denoising performances compared to only ANC–NLMS. 
For our proposed two-stage denoising algorithm, the vanishing of deep 
encoder/decoder or interaction block lead to performance degradation 
of DINC-Net, where it seems that the interaction block played a more 

important role in DINC-Net’s outperformance. The advantages achieved 
by both the deep encoder/decoder and the interaction block are in line 
with expectations. The deep encoders empower the network to acquire 
larger temporal receptive field, hence extracting more features embeded 
in two channels of inputs. The interaction blocks take full account of the 
combination of dual-channel features and TCN outputs in various levels, 
and reserve and exploit all the information that can be used. It can also 
be noticed that even if deep encoder/decoder or interaction block were 
removed from DINC-Net, the dual-inputs setup still outperformed the 
single-input setup for the DNN in the second stage. The above ablation 
experiments prove the rationality of the architecture of the proposed 
two-stage noise cancellation algorithm, from the perspective of effect of 
the second denoising stage as well as its deep encoder/decoder and 
interaction block. It is worth mentioning that, the proposed algorithm 
suffered from an extra 32 % increment in model size compared to the 
two stage approach involving Conv-TasNet, while it achieved huge 
promotions in averaged NCM and fwSNRseg. 

Performance comparisons in terms of evaluation metrics considering 
different levels of denoising difficulty, different databases, and different 
SNRs, have been performed. As aforementioned, the pure cardiopul-
monary sound recordings were selected out from two public databases: 
PhysioNet and ICBHI databases, which were established to provide re-
cordings of cardiac sounds and respiratory sounds, respectively. In fact, 
most of the existing auscultation denoising algorithms aimed at 
extracting either cardiac sounds or respiratory sounds out from noisy 
auscultation data. Hence, performance evaluations on testing datasets 
using synthetic data generated from PhysioNet and ICBHI databases 
would be displayed separately, and for each subset common algorithms 
as well as specific algorithms were performed for comparison. The 
common algorithms included one-stage ANC-NLMS and two-stage ANC 
+ Conv-TasNet [21]. For the subset corresponding to PhysioNet, ANC- 
RLS [12], specifically designed for cardiac sound denoising, was 
applied for comparison. Multiband spectral subtraction (MBSS) [13], 
proposed for respiratory sound denoising, was compared in ICBHI- 
related subset. 

Noise cancellation performances evaluated using NCM and 
fwSNRseg on the testing subset corresponding to easy denoising tasks 
(LEVEL-E) are displayed in Table 4. The noises contaminating cardio-
pulmonary sound signals in the training set and the testing set come 
from the same source of environmental noises. Specifically, we let most 
of the recordings in the testing set have different SNRs from those in the 
training set, which imitates a real denoising task where the unknown 
SNR can vary in a wide range. The fwSNRseg and the NCM were 
calculated on a per segment basis and then averaged over all segments in 
each level of SNR. 

It can be observed from Table 4 that, in LEVEL-E the proposed noise 
cancellation algorithm achieved the highest NCM and fwSNRseg in each 
SNR level, for both cardiac sound and respiratory sound denoising tasks. 
Compared to the denoising results of one-stage NLMS, in the testing set 
generated from PhysioNet database our proposed algorithm achieved 
0.572 increments in the NCM and 14.878 dB increments in the 
fwSNRseg, averaged in all SNR levels. For the ICBHI-related testing set, 
we got 0.412 and 13.165 dB for increments in the averaged NCM and the 
averaged fwSNRseg. The proposed algorithm did not exhibit much 
performance difference in denoising cardiac sounds and respiratory 

Table 3 
Results of Ablation Experiments on LEVEL-E.  

Method Model size NCM fwSNRseg (dB) 

No process – 0.126 − 5.662 
ANC-NLMS (Only) – 0.138 − 5.567 
NLMS + Conv-TasNet 3.27M 0.233 − 1.037 
Proposed 4.32M 0.630 8.455 
Without deep encoder/decoder 3.93M 0.505 5.354 
Without interaction block 3.66M 0.301 2.623  
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sounds, hence proving its strong adaptability. At all SNR levels involved 
in these simulation experiments, the proposed algorithm maintained 
robust denoising performances. It is also noticed that ANC + Conv- 
TasNet was not guaranteed to outperform an arbitrary-one-stage noise 
cancellation algorithm, indicating that the design of DNN in the second 
stage plays a crucial role in the noise cancellation task. Compared to 
single-channel denoising methods such as the Conv-TasNet, the pro-
posed two-stage approach is two-microphone setup oriented. In the 
second stage, if only single-channel denoising models are used to deal 
with the coarsely denoised auscultation signal, the final performance 
critically relies on the model obtained by a limited size of training set 
and the useful information reserved in the coarsely denoised signal. In 
the proposed DINC-Net, the estimated interference given by the first 
stage is also used, and interaction blocks are designed to fuse all features 
that can be used. For this reason, the proposed method is expected to 
dynamically adapt to changes in ambient noise, and the experimental 
results verified its effectiveness. 

Table 5 shows the averaged NCM and fwSNRseg calculated when the 
noise recordings used in the testing set had distinct patterns from those 
in the training set, i.e. LEVEL-D testing set was used for performance 
evaluation. It can be found that, compared to ANC-NLMS, the proposed 
two-stage denoising algorithm still achieved significant increments in 
the NCM and the fwSNRseg: (0.474, 13.511 dB) and (0.409, 11.430 dB) 
for PhysioNet and ICBHI related testing set, respectively. The increments 
of evaluation metrics in LEVEL-D showed a slight decline compared to 
those in LEVEL-E, which is natural as the denoising difficulty increased. 
Nonetheless, the proposed algorithms still yielded substantial out-
performance on denoising both cardiac sounds and respiratory sounds, 
compared to other algorithms. Such an advantage may also be attributed 
to the dual-input setup and DINC-Net’s interaction blocks. Different 
from the monaural denoising tasks, in the denoising problem addressed 
in this paper, information of the ambient noise provided by the auxiliary 
microphone can be fully utilized by the proposed method, even though 
the noise pattern was not considered in the training set. 

4.2. Real application results 

We deployed an online noise cancellation prototype in the electronic 
stethoscope Mintti Smartho-D2. This noise cancellation prototype 
implemented end-to-end noise cancellation for each 0.5 s segment and 
gave consistent output with interpolation between adjacent denoised 
segments. In the training process, the evaluation metrics calculated on 
validation set showed that the proposed two-stage algorithm yielded 
0.452 and 13.230 dB increments in the averaged NCM and fwSNRseg 
compared to NLMS, respectively. Such a slight performance degrade 
compared to 2 s process is worth to suffer when the required input data 
length can be reduced substantially. 

This denoising prototype was applied in auscultation on healthy 
subjects and aortic stenosis patients, and the performances were eval-
uated by our built discriminator, which judged the 2 s-segments divided 
from the recordings as “acceptable” or “unacceptable” for further 
analysis. Table 6 displays signal quality assessment results of the 
denoised output and the simultaneously recorded noisy data for the two 
auscultation scenarios. The corresponding acceptable rates of electronic 
stethoscope’s output segments with and without denoising process is 
intuitively displayed in Fig. 4. It can be noticed that the proposed noise 
cancellation prototype greatly improved the auscultation signal quality 
compared to the unprocessed noisy data: in both of the two scenarios, 
the acceptable rates can be raised from low levels to not less than 95 %. 

Table 4 
Comparison of Noise Cancellation Performances on LEVEL-E.   

Metrics NCM fwSNRseg (dB) 

SNR (dB) − 6 − 3 0 3 6 − 6 − 3 0 3 6 

PhysioNet No process 0.039 0.046 0.058 0.076 0.101 − 7.896 − 7.778 − 7.586 − 7.294 − 6.776 
ANC-NLMS 0.045 0.055 0.071 0.093 0.123 − 8.118 − 7.926 − 7.633 − 7.187 − 6.518 
ANC-RLS 0.048 0.060 0.077 0.102 0.135 − 8.046 − 7.836 − 7.514 − 7.023 − 6.286 
NLMS + Conv-TasNet 0.134 0.166 0.207 0.260 0.314 − 4.723 − 3.775 − 2.628 − 1.270 0.150 
NLMS + DINC-Net (Proposed) 0.583 0.622 0.655 0.682 0.707 5.057 6.223 7.403 8.584 9.742 

ICBHI No process 0.132 0.156 0.184 0.217 0.256 − 4.994 − 4.621 − 4.079 − 3.315 − 2.279 
ANC-NLMS 0.138 0.163 0.193 0.228 0.268 − 5.009 − 4.551 − 3.898 − 3.000 − 1.829 
MBSS 0.246 0.277 0.308 0.344 0.385 − 4.936 − 4.460 − 3.781 − 2.856 − 1.644 
NLMS + Conv-TasNet 0.146 0.186 0.239 0.305 0.375 − 2.229 − 1.223 0.090 1.733 3.502 
NLMS + DINC-Net (Proposed) 0.533 0.572 0.614 0.648 0.681 7.384 8.536 9.618 10.581 11.421  

Table 5 
Comparison of Noise Cancellation Performances on LEVEL-D.   

Metrics NCM fwSNRseg (dB) 

SNR (dB) − 6 − 3 0 3 6 − 6 − 3 0 3 6 

PhysioNet No process 0.110 0.135 0.167 0.203 0.244 − 6.014 − 5.720 − 5.283 − 4.670 − 3.863 
ANC-NLMS 0.124 0.152 0.185 0.222 0.263 − 6.997 − 6.525 − 5.869 − 5.019 − 3.964 
ANC-RLS 0.129 0.157 0.191 0.228 0.268 − 6.991 − 6.514 − 5.857 − 4.989 − 3.902 
NLMS + Conv-TasNet 0.255 0.293 0.332 0.376 0.415 − 3.011 − 2.237 − 1.202 0.033 1.238 
NLMS + DINC-Net (Proposed) 0.615 0.641 0.659 0.686 0.716 5.285 6.564 7.856 9.125 10.353 

ICBHI No process 0.157 0.183 0.215 0.254 0.300 − 3.758 − 3.227 − 2.493 − 1.498 − 0.194 
ANC-NLMS 0.178 0.206 0.240 0.280 0.326 − 3.552 − 2.727 − 1.672 − 0.379 1.179 
MBSS 0.319 0.350 0.391 0.434 0.469 − 3.393 − 2.744 − 1.888 − 0.696 0.970 
NLMS + Conv-TasNet 0.239 0.285 0.339 0.401 0.456 − 0.062 0.900 2.030 3.305 4.614 
NLMS + DINC-Net (Proposed) 0.591 0.625 0.661 0.689 0.711 8.078 9.077 10.061 10.982 11.800  

Table 6 
Signal Quality Assessment by Discriminator in Real Auscultation Applications.    

Recorded segments 

Unacceptable Acceptable 

Normal No process 313 254 
Output of the denoising 
prototype 

22 545 

Abnormal (Aortic 
Stenosis) 

No process 840 300 
Output of the denoising 
prototype 

57 1083  
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Performance on healthy subjects was slightly better than that on aortic 
stenosis patients, as the level of difficulty increased in aortic stenosis 
auscultation denoising tasks: e.g. the aortic stenosis murmurs between 
S1 and S2 sound like some kinds of background noises. Anyway, the 
developed denoising prototype based on our proposed two-stage algo-
rithm showed its effectiveness in normal and abnormal cardiac sound 
auscultation applications, even when judged by a “conservative” 
discriminator. 

Fig. 5 and Fig. 6 show examples of noise cancellation results of 
auscultation on healthy subjects and aortic stenosis patients, respec-
tively. Both of these two auscultation examples last for 12 s, and they are 
displayed in forms of time–frequency spectra. As aforementioned, in the 
development mode the raw noisy data and the ambient noise can also be 
recorded, and hence the compared algorithms can be carried out. The 

top of each figure displays the raw noisy auscultation data and the 
ambient noise, the middle rows show the denoising results of the one- 
stage ANC-NLMS and the two-stage NLMS + Conv-TasNet, and the 
output of our denoising prototype is plotted on the bottom of each 
figure. In order to facilitate visualization, only the spectrograms under 2 
kHz for the denoised outputs are displayed. Both of these two examples 
illustrated the outperformance achieved by the two-stage algorithms 
compared to the one-stage algorithm, and our algorithm involving a 
dual-input interaction block in the second stage gave most favorable 
noise cancellation results. It is visualized from the example in Fig. 5 that, 
apart from noise cancellation, both the cardiac sounds and the respira-
tory sounds of a healthy subject were reserved. Fig. 6 shows that by our 
developed noise cancellation prototype, not only the noises lying on the 
areas without cardiac sounds were automatically removed, but also the 

Fig. 4. The acceptable rates of electronic stethoscope’s output segments before and after noise cancellation. The blue bars indicate acceptable rates without 
denoising by the proposed method, and the red bars indicate acceptable rates with the proposed denoising method involved. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. A noise cancellation example for normal cardiopulmonary sound of a healthy subject. The signal quality was improved to various degrees by different 
methods: (a) NLMS; (b) NLMS + Conv-TasNet; (c) the proposed two-stage method NLMS + DIDN-Net. The most significant improvement in signal quality can be 
observed after denoising by the proposed method, where background speech interference and other noises were strongly suppressed. 
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noise cancellation functioned when the noises were superimposed on 
cardiac sounds, including S1, S2, and murmurs. 

5. Discussion 

For real applications of the stethoscope in cardiopulmonary auscul-
tation, noise cancellation is of great importance for collecting and 
further analyzing cardiopulmonary sound signals. Compared to the 
conventional stethoscopes, the electronic stethoscope has the advantage 
of employing various noise cancellation algorithms. Though monaural 
denoising methods were used to address this issue, the lack of “evi-
dence” of ambient noises may lead to false cancellation of useful com-
ponents, especially for auscultation on patients in complicated clinical 
environments. In the two-microphone setup, the reference channel 
collecting ambient noises right provides such “evidence”, so our pro-
posed two-stage noise cancellation approach is developed for the elec-
tronic stethoscope with an extra auxiliary microphone. 

Our two-stage method contains a cascade of conventional ANC and 
DNN, realized by NLMS and our proposed DINC-Net. In fact, involving 
two-stage approach or ANN in this field has attracted some attention in 
very recent years. In [22], the two-stage ALE + ANN was designed for 
auscultation denoising, where the input to the simple ANN with only one 
hidden layer is the one-channel output of the ALE. In [48], ANNs with 
one or two hidden layers were combined with discrete wavelet trans-
form for lung sound denoising, which demonstrated that ANN has the 
potential of auscultation enhancement. The key contribution of our 
work is that in the second denoising stage DNN, not only the coarsely 
denoised auscultation signal sANC(n) but also the estimated interference 
y(n) from the first ANC stage were used as inputs, and a dual-channel 
interactive denoising module was designed to exploit and fuse the in-
formation in these two inputs for refined noise cancellation. To illustrate 
the advantage brought by the above innovation, a two-stage denoising 
method with single input to DNN in the second stage was carried out for 
comparison. To achieve the performance of this compared methodology 
to the maximum, Conv-TasNet, a state-of-the-art end-to-end denoising 
DNN, was used instead of a simple shallow neural network in the second 
stage. In our proposed DINC-Net, deep encoder/decoder and interactive 

denoising module are established. The deep encoder/decoder uses 
expansion factors to increase the temporal receptive field, and stack 
encoding/decoding layers hierarchically to transform the input wave-
form into a nonlinear latent space or the reverse. The interactive 
denoising module receives the encoded two-channel feature input and 
uses a masking scheme for auscultation denoising refinement. The ad-
vantages achieved by the contributions in the DINC-Net have been well 
displayed via ablation experiments. In addition, the experiments on 
simulation data as well as real applications showed the benefits by the 
proposed interactive denoising scheme. The results are as expected, 
verifying that both the residual noise ingredients in SANC(n) and the 
useful signal components in y(n) can be efficiently addressed by the 
proposed method for denoising refinement. 

In the first denoising stage, a traditional ANC-NLMS was used. To 
build the datasets for training our DINC-Net, the order of the unknown 
FIR system was randomly determined among 3 ~ 5, and the corre-
sponding parameters were also randomly given. In the performance 
evaluation experiments, the order of NLMS was fixed at 4, and the main 
concern was focused on the second denoising stage. In Table 7, the noise 
cancellation performances of our method involving various orders of 
ANC-NLMS evaluated at LEVEL-E sets were displayed. It can be observed 
that the proposed two-stage denoising method did not benefit from a 
high-order NLMS in the first stage, while on the contrary slight perfor-
mance degrade would occur with the order growth. In real applications, 
we never know the complete information of unknown system and the 
way to contaminate cardiopulmonary sounds by noises. Furthermore, a 
complicated auscultation environment implies fast varying system and 

Fig. 6. A noise cancellation example for abnormal cardiac sound of an aortic stenosis patient. The proposed method not only eliminated speech interference and 
background noise, but also reserved the pathological features of cardiac sound for an aortic stenosis patient. 

Table 7 
Denoising Performances in Variation of NLMS Filter Orders.  

Evaluation 
metrics 

Method Filter order (N) 

N = 4 N = 8 N = 16 N = 32 N = 64 

NCM NLMS 0.138 0.139 0.147 0.145 0.145 
Proposed 0.630 0.597 0.571 0.557 0.523 

fwSNRseg 
(dB) 

NLMS − 5.567 − 5.562 − 5.401 − 5.435 − 5.468 
Proposed 8.455 8.005 6.302 6.195 5.814  

C. Yang et al.                                                                                                                                                                                                                                    



Biomedical Signal Processing and Control 79 (2023) 104175

11

unpredictable category of noises. Even so, the results in Table 7 suggest 
employing a simple form of ANC in the first stage for coarse noise 
cancellation and leaving the further denoising refinement to the 
designed DINC-Net in the second stage. The real experimental results 
using our developed noise cancellation prototype also gave some plau-
sible support for this assumption. 

The first limitation of the study in this paper stems from the signal 
quality issue of the used data: in fact we never know if a cardiopulmo-
nary sound recording is truly without noise, which can only be subjec-
tively assessed by auscultation experts or some artificial machine. Note 
that such a predicament also severely limited the application of the 
existing auscultation denoising methods. The second problem is that 
training DNNs requires a large amount of data as a driver. However, to 
form a complete auscultation database, the collection of cardiorespira-
tory sounds is a burdensome task and taking all the complicated acoustic 
environments into account is not easy. Finally, individual variability of 
cardiopulmonary sounds among patients remains an issue to be 
considered, although our auscultation enhancement method has been 
validated on aortic stenosis patients. 

In future works, more cardiopulmonary sound signals recorded in 
controllable ambient noise environments would be added, and more 
categories of pathological cardiac sounds and respiratory sounds would 
be involved, to improve the robustness of the proposed noise cancella-
tion method in real auscultation applications. In training the proposed 
denosing model, transfer learning can also be adopted. Starting from an 
initialised model trained for a large-scale audio/speech signal denoising 
task, transfer learning may further improve our model’s performance. 
The feedbacks from physicians, who are users of noise-cancelling elec-
tronic stethoscopes implemented with our denoising prototype, will also 
be considered for further method improvement. 

6. Conclusion 

The noise cancellation problem in electronic stethoscope has been 
addressed in this paper. A two-stage noise cancellation approach was 
developed for cardiopulmonary sound denoising. The first denoising 
stage was implemented with a conventional ANC method for coarse 
noise cancellation, and the second stage was built by our proposed 
DINC-Net, whose dual-inputs included the coarsely denoised ausculta-
tion signal and the estimated interference from the first stage. The 
proposed DINC-Net used two deep encoders to extract features of dual- 
inputs, one interactive denoising module to exploit the mutual infor-
mation of dual-inputs for denoising mask generation, and one deep 
decoder to give an ultimate denoised output. The noise cancellation 
performance on simulation experiments and real auscultation applica-
tions verified the advantages achieved by the proposed two-stage 
method, compared to the one-stage methods as well as the two-stage 
method without considering the interactive denoising module pro-
posed in this paper. The proposed two-stage method provided a prom-
ising technical route for noise cancellation in real online auscultation 
applications of electronic stethoscopes. For future research, more cate-
gories of auscultation signals and physician users’ feedbacks would be 
involved to improve the robustness of the proposed noise cancellation 
method. Transfer learning will also be introduced in the training of the 
proposed model to improve denoising performance. 

CRediT authorship contribution statement 

Chunjian Yang: Conceptualization, Methodology, Formal analysis, 
Software, Investigation, Visualization, Writing – original draft. Neng 
Dai: Conceptualization, Validation, Data curation, Visualization. Zhi 
Wang: Investigation, Conceptualization, Validation, Data curation. 
Shengsheng Cai: Validation, Investigation, Data curation. Jiajun 
Wang: Writing – review & editing, Resources, Project administration, 
Supervision. Nan Hu: Conceptualization, Methodology, Validation, 
Writing – review & editing, Supervision, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This work was supported by the Suzhou Science and Technology 
Project under Grant SYS2019029. The sponsors were not involved in 
study design, implementation or publication. 

References 

[1] M. Elhilali, J.E. West, The Stethoscope Gets Smart: Engineers from Johns Hopkins 
are giving the humble stethoscope an AI upgrade, IEEE Spectr. 56 (2) (2019) 
36–41. 

[2] I. McLane, D. Emmanouilidou, J.E. West, M. Elhilali, Design and comparative 
performance of a robust Lung auscultation system for noisy clinical settings, IEEE J. 
Biomed. Health. Inf. 25 (7) (2021) 2583–2594. 

[3] S.R. Messer, J. Agzarian, D. Abbott, Optimal wavelet denoising for 
phonocardiograms, Microelectron. J. 32 (12) (2001) 931–941. 

[4] O. Beya, B. Jalil, E. Fauvet, and O. Laligant, Empirical modal decomposition 
applied to cardiac signals analysis, in: Proc. of SPIE-IS&T Electronic Imaging, vol. 
7535, Feb. 2010, pp. 1–11. 

[5] M. K. Zia, B. Griffel, and J. L. Semmlow, Robust detection of background noise in 
phonocardiograms, in: Proc. first Middle East Conf. Biomed. Eng., 2011, pp. 
130–133. 

[6] A. Gavrovska, M. Slavkovic, I. Reljin, and B. Reljin, Application of wavelet and 
EMD-based denoising to phonocardiograms, in: Proc. Int. Symp. Signals, Circuits 
Syst., 2013, pp. 1–4. 

[7] A. Mondal, I. Saxena, H. Tang, and P. Banerjee, A noise reduction technique based 
on nonlinear kernel function for heart sound analysis, IEEE J. Biomed. Health. Inf. 
22(3) (2018) 775–784. 

[8] N.S. Haider, Respiratory sound denoising using empirical mode decomposition, 
hurst analysis and spectral subtraction, Biomed. Signal Process. Control 64 (2021), 
102313. 

[9] L. Li, W. Xu, Q. Hong, F. Tong, and J. Wu, Classification between normal and 
adventitious lung sounds using deep neural network, in: Proc. 10th Int. Symp. 
Chin. Spoken Lang. Process., Oct. 2017, pp. 1–5. 

[10] H.C. Shin, A.H. Sayed, W.J. Song, Variable step-size NLMS and affine projection 
algorithms, IEEE Signal Process. Lett. 11 (2) (2004) 132–135. 

[11] N.Q. Al-Naggar, M.H. Al-Udyni, Performance of adaptive noise cancellation with 
normalized last-mean-square based on the signal-to-noise ratio of lung and heart 
sound separation, J. Healthcare Eng. (2018), 9732962. 

[12] J. Gnitecki, Z. Moussavi, and H. Pasterkamp, Recursive least square adaptive noise 
cancellation filtering for heart sound in lung sounds recording, in: Proc. IEEE Eng. 
Med. Biol. Soc., 2003, pp. 2416–2419. 

[13] D. Emmanouilidou, E.D. McCollum, D.E. Park, M. Elhilali, Adaptive noise 
suppression of pediatric lung auscultations with real applications to noisy clinical 
settings in developing countries, IEEE Trans. Biomed. Eng. 62 (9) (2015) 
2279–2288. 

[14] D. Gradolewski, G. Magenes, S. Johansson, W.J. Kulesza, A wavelet transform- 
based neural network denoising algorithm for mobile phonocardiography, Sensors 
19 (4) (2019) 957. 

[15] E. Messner, M. Fediuk, P. Swatek, S. Scheidl, F. Smolle-Juttner, H. Olschewski, and 
F. Pernkopf, Crackle and breathing phase detection in lung sounds with deep 
bidirectional gated recurrent neural networks, in: Proc. EMBC, 2018, pp. 356–359. 

[16] K.-H. Tsai, et al., Blind monaural source separation on heart and lung sounds based 
on periodic-coded deep autoencoder, IEEE J. Biomed. Health. Inf. 24 (11) (2020) 
3203–3214. 

[17] X. Wang, C. Liu, Y. Li, X. Cheng, J. Li, G.D. Clifford, Temporal-framing adaptive 
network for heart sound segmentation without prior knowledge of state duration, 
IEEE Trans. Biomed. Eng. 68 (2) (2021) 650–663. 

[18] S.Y. Lu, S.H. Wang, Y.D. Zhang, TBNet: a context-aware graph network for 
tuberculosis diagnosis, Comput. Methods Programs Biomed. 214 (2022), 106587. 

[19] S.Y. Lu, S.H. Wang, Y.D. Zhang, Detection of abnormal brain in MRI via improved 
AlexNet and ELM optimized by chaotic bat algorithm, Neural Comput. Appl. 33 
(2021) 10799–10811. 

[20] A. Li, W. Liu, C. Zheng, X. Li, Two heads are better than one: a two-stage complex 
spectral mapping approach for monaural speech enhancement, IEEE/ACM Trans. 
Audio. Speech, Lang. Process. 29 (2021) 1829–1843. 

[21] X. Xiang, X. Zhang, H. Chen, Two-stage learning and fusion network with noise 
aware for time-domain monaural speech enhancement, IEEE Sig. Process. Lett. 28 
(2021) 1754–1758. 

C. Yang et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1746-8094(22)00629-2/h0005
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0005
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0005
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0010
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0010
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0010
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0015
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0015
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0040
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0040
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0040
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0050
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0050
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0055
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0055
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0055
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0065
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0065
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0065
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0065
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0070
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0070
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0070
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0080
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0080
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0080
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0085
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0085
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0085
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0090
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0090
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0095
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0095
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0095
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0100
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0100
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0100
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0105
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0105
http://refhub.elsevier.com/S1746-8094(22)00629-2/h0105


Biomedical Signal Processing and Control 79 (2023) 104175

12

[22] S. Rajkumar, K. Sathesh, N.K. Goyal, Neural network-based design and evaluation 
of performance metrics using adaptive line enhancer with adaptive algorithms for 
auscultation analysis, Neural Comput & Applic. 32 (2020) 15131–15153. 

[23] Y. Luo, N. Mesgarani, Conv-TasNet: surpassing ideal time–frequency, magnitude 
masking for speech separation, IEEE/ACM Trans. Audio. Speech, Lang. Process. 27 
(8) (2019) 1256–1266. 

[24] Minttihealth: cardiopulmonary disease analysis and diagnosis system, Available 
from: <http://www.melodicare.cn/#/Product?productIndex=0>. 

[25] R.M. Ramli, A.O.A. Noor, S.A. Samad, A review of adaptive line enhancers for noise 
cancellation, Austral. J. Basic Appl. Sci. 6 (6) (2012) 337–352. 

[26] B. Widrow, et al., Adaptive noise cancelling: principles and applications, Proc. IEEE 
63 (12) (1975) 1692–1716. 

[27] C. Xu, W. Rao, E.S. Chng, H. Li, SpEx: Multi-scale time domain speaker extraction 
network, IEEE/ACM Trans. Audio. Speech, Lang. Process., Apr. 28 (2020) 
1370–1384. 

[28] H. Chen, T. Xiang, K. Chen, and J. Lu, Nonlinear residual echo suppression based 
on multi-stream Conv-TasNet, in: Proc. INTERSPEECH, 2020. 

[29] J. Woo, M. Mimura, K. Yoshii, T. Kawahara, End-to-end music-mixed speech 
recognition, in: ProceedIngs of the Asia-Pacific Signal and Information ProcessIng 
Association Annual Summit and Conference, 2020, pp. 800–804. 

[30] B. Kadioglu, M. Horgan, X. Liu, J. Pons, D. Darcy, and V. Kumar, An empirical 
study of Conv-TasNet, in: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 
2020, pp. 7264–7268. 

[31] A. Pandey and D. Wang, Densely connected neural network with dilated 
convolutions for real-time speech enhancement in the time domain, in: Proc. IEEE 
Int. Conf. Acoust., Speech Signal Process., 2020, pp. 6629–6633. 

[32] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human- 
level performance on ImageNet classification, in: Proc. IEEE Int. Conf. Comput. 
Vis., 2015, pp. 1026–1034. 

[33] H. Wang, Z.-J. Zha, X. Chen, Z. Xiong, J. Luo, Dual path interaction network for 
video moment localization, in: Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020, 
pp. 4116–4124. 

[34] C. Zheng, X. Peng, Y. Zhang, S. Srinivasan, Y. Lu, Interactive speech and noise 
modeling for speech enhancement, Proc. AAAI 35 (2021) 14549–14557. 

[35] Y. Luo and N. Mesgarani, TasNet: Time-domain audio separation network for real- 
time, single-channel speech separation, in: Proc. IEEE Int. Conf. Acoust., Speech, 
Signal Process., 2018, pp. 696–700. 

[36] G.D. Cliffordet et al. “Classification of normal/abnormal heart sound recordings: 
The physionet/computing in cardiology challenge 2016, in: Proc. Comput. Cardiol. 
Conf., 2016, pp. 609–612. 

[37] B. Rocha, D. Filos, L. Mendes, Vogiatzis et al., A respiratory sound database for the 
development of automated classification, in: Precision Medicine Powered by 
pHealth and Connected Health, 2018, pp. 33–37. 

[38] H. Tang, M. Wang, Y. Hu, et al., Automated signal quality assessment for heart 
sound signal by novel features and evaluation in open public datasets, Biomed Res. 
Int. (2021) 1–15. 

[39] A. Kala, A. Husain, E.D. McCollum, M. Elhilali, An objective measure of signal 
quality for pediatric lung auscultations, in: 2020 4second Annual International 
Conference of the IEEE Engineering, MedicIne & Biology Society, 2020, 
pp. 772–775. 

[40] J. Thiemann, N. Ito, E. Vincent, The diverse environments multi-channel acoustic 
noise database: a database of multichannel environmental noise recordings, 
J. Acoust. Soc. Amer. 133 (5) (2013) 3591. 

[41] J. Ma, Y. Hu, P.C. Loizou, Objective measures for predicting speech intelligibility in 
noisy conditions based on new band-importance functions, J. Acoust. Soc. Amer. 
125 (2009) 3387–3405. 

[42] K. Kondo, Estimation of forced-selection word intelligibility by comparing 
objective distances between candidates, Appl. Acoust. 106 (2016) 113–121. 

[43] Methods for calculation of the speech intelligibility index, ANSI-S3.5-1997-R2007, 
1997. 

[44] S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated perspective 
on multimicrophone speech enhancement and source separation, IEEE/ACM Trans. 
Audio. Speech, Lang. Process 25 (4) (2017) 692–730. 

[45] P.C. Loizou, Speech Enhancement: Theory and Practice, second ed., CRC Press, 
Boca Raton, FL, USA, 2013. 

[46] S. Pascual, A. Bonafonte, J. Serrà, SEGAN: Speech enhancement generative 
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