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Abstract—In the study of electronic stethoscope, analysis of 

phonocardiogram depends on the localization and identification 

of the first cardiac sound (CS) S1 and the second CS S2, which 

are basic components of the  CS signal. However, in realistic 

environments the recorded CS signal is often mixed with the 

respiratory sound (RS) and other ambient interferences, which 

may cause failure in CS component localization and identification. 

In this paper, a CS localization and identification method is 

proposed, which is based on two steps: the rough CS localization 

step and the identification and mending step. The rough CS 

localization step involves calculating the approximate Shannon 

entropy, to roughly localize the CS components in low 

computational complexity. On account of the influence of RS and 

other ambient interferences, the aforementioned first step may 

fail to localize some CS components.  By calculating and 

comparing the ratio of low-frequency power to high-frequency 

power for each CS component, the second step of the method can 

amend the rough CS localization results and identify which type 

of CS component they belong to. At last, the estimation of heart 

rate (HR) is also easily derived from the CS localization and 

identification results. Experiments using data recorded in various 

conditions shows the efficiency of the proposed method. 

Keywords—phonocardiogram; cardiac sound localization;  

heart rate estimation. 

I.  INTRODUCTION 

The development of digital signal processing technology 
provides the possibility of automatic noninvasive low-cost 
diagnosis of heart and lung diseases by using electronic 
stethoscopes, in place of the traditional auscultation art 
mastered by only a few skilled physicians. The study of 
phonocardiogram (PCG) is based on analyzing the cardiac 
sound (CS) signal recorded by electronic stethoscope, which is 
a kind of complex sound signal that can vary among various 
subjects in various health statuses. The problem of 
cardiopulmonary sound overlap is always met when we 
processing the data recorded by electronic stethoscope in a 
real environment, as the CS and the respiratory sound (RS) 
overlap not only in the time domain but also in the frequency 
band 60-320 Hz [1]. Besides, there are many environment 
noises interfere the recorded data, which also affect the 
efficiency of auscultation. The key to address this problem is 
correctly segmenting the data where CS does exist and then 
separating CS and RS out for following analysis. In this 

context, correct localization and identification of CS 
components plays an important role in assessing the heart and 
lung status using electronic stethoscopes. Generally, CS 
includes four components in one period: the first component 
S1, the second component S2, the third component S3 and the 
fourth component S4 [2], where S1 and S2 are audible parts. 
The S1 represents the first CS of the CS signal and the S2 
represents the second CS of the CS signal. The sound signal of 
healthy children and young people includes the third heart 
sound, which is a normal phenomenon, and the fourth heart 
sound is a pathological heart sound. In this paper, we only 
concern the localization and identification of S1 and S2. 

In the literature, localization of CS embedded in RS 
signals is usually realized by thresholding the extracted feature 
sequences according to some characteristics of RS and CS 
signals [3-6]. Adaptive thresholding is the most practical 
method because it does not require any prior information. The 
accuracy of these CS localization methods depends, of course, 
on the corresponding thresholds and the effectiveness of 
extracted features for distinguishing CS from RS. A 
multiresolution products based method using wavelet 
coefficients was proposed in [4] for localizing CS. By the 
method of variance fractal dimension trajectory [5], 
localization of CS was achieved in lung sounds recordings. 
Third-order cumulant was used in [7] to identify the 
nonlinear data parts and a time-frequency analysis method 
was proposed. A multi-scale mean shift CS localization 
method was given in [8], where the data was divided into 
linear and nonlinear parts firstly by higher-order statistics [9] 
and wavelet coefficients. The Shannon entropy was used to 
localize the CS components [10]. This Shannon entropy based 
method was claimed to achieve excellent localization results, 
while it needs a large computational complexity. In fact, most 
of the existing CS localization methods only consider the 
scenarios when the subjects are taking breath at low or 
medium flow rates in quite environment, while they may 
deteriorate when the subjects are taking deep breath or the 
ambient is very noisy. 

In this paper, the problem of CS localization and 
identification is addressed, and a method is proposed which 
has two steps: the rough CS localization step and the 
identification and mending step. By calculating the 
approximate Shannon entropy with low computational 
complexity, the first step can roughly localize the CS 
components S1 and S2. By calculating and comparing the 
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ratio of low-frequency power to high-frequency power for 
each CS component, the second step of the method can amend 
the rough CS localization results, which are easily affected by 
RS at high flow rates and other ambient interference, and 
identify which type of CS component they belong to. 
Ultimately, the estimation of heart rate (HR) can be easily 
derived from the CS localization and identification results. 
Data recorded from experiments in various realistic scenarios, 
that including the subjects are taking deep breath or the 
ambient is very noisy, are used to verify the efficiency of the 
proposed method. 

II. METHOD 

The proposed CS localization and identification method 
includes two steps: the first step is to roughly localize the CS 
components by estimating the approximate Shannon entropy 
of the recorded data, and the second step is to amend the rough 
localization results that are easy to deteriorate caused by RS 
and ambient noise and identify which type of CS components 
they belong to. 

A.   Rough localization 

As probability can be used to measure the uncertainty of 
information, Shannon entropy was used to design a CS 
localization method in [10]. Assume that a segment of 

recorded data with N  samples is  1 2, , , NX X X , and then 

the probability density function of the data distribution 
estimated using this data segment is given as follows:          
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h  is Gaussian kernel bandwidth. The method in [10] 

calculated the Shannon entropy of  p x  

      logH p p x p x dx



   

and compared  H p  with an adaptive threshold to determine 

whether this data segment is located in a certain CS 
component. 

However, an accurate estimation of  H p  will cause a 

large computational complexity, and hence instead in this 
paper we calculate the approximate Shannon entropy 
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where , 1,2, ,kx k K   are samples from the uniform 

sampling in  10 , 10     with sampling interval 

 20 / 1w K  , and   and   are mean and standard 

deviation of this data segment, respectively. The Gaussian 

kernel bandwidth for  p x  is given by 0.21.06 /h N  as 

suggested in [9]. The detection criterion of this rough 
localization procedure is given as follows: 
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where 
1H  denotes that CS component is detected in this data 

segment, 
0H  denotes the opposite of 

1H , and   is a preset 

constant parameter. The estimate of  Ĥ p  greatly reduces the 

computational complexity of Shannon entropy based CS 
localization method. 

Commonly, the length of each data segment should be set 
to be much shorter than that of S1 or S2. Hence, in each CS 
component there will be several continuous or discontinuous 
data segments that are decided to be located in CS. In our 
proposed method, we connect the detected data segments that 
are close to each other together, whether they are continuous 
or discontinuous, and consider them to belong to the same CS 
component. 

In many papers, it was claimed that though troubled by the 
high computational complexity, the Shannon entropy based 
CS localization method in [10] can achieve excellent 
performance. This may be true when the subjects are breathing 
at low or medium flow rates in quite environment. When the 
subjects are taking a deep breath or the CS is interfered, this 
method is easy to deteriorate. Fig.1 (a) and Fig.1 (b) show the 
performances of the method in [10] when one subject is taking 
a normal breath and a deep breath, respectively, where the 
black line represents the signal data and the blue line 
represents the localization result of CS components. It can be 
noticed that compared with the satisfactory performance when 
normal breath, in the deep breath scenario, the detection of 
some CS components is possibly to be missed. In this context, 
we should amend this rough localization result. 

 

(a) 

 



(b) 

Fig.1. Examples of localization results of the method in [10]: (a) the result for 
a batch of normal breath data; (b) the result for a batch of deep breath data. 

B. Identification and Mending 

As the example depicted in Fig. 1 (b), though there may be 
some CS components not detected by the aforementioned first 
step, for a long enough time, there will be one or more couples 
of S1 and S2 detected in the rough localization step. In our 
method, if the distance between two adjacent detected CS 
components is less than a certain short time interval, we 
consider that the front one is S1 and the next one is S2, and 
they belong to the same CS cycle. This preliminary 
identification of CS components is reasonable, as the distance 
between the adjacent S1 and S2 is always much shorter than 
that between the adjacent S2 and S1. The left unclassified CS 
components will be further identified by using the information 
derived from the already classified ones. 

The identification of the unclassified CS components is 
based on the fact that S1 has more low-frequency components 
than S2, which is shown in Fig. 2. If the vector of fast Fourier 
transform (FFT) result of some detected CS component data is 

T
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T
  denotes transpose and 

flX  and 

fhX  are low-frequency component vector and high-frequency 

component vector, respectively, we calculate the ratio of low-
frequency power to high-frequency power 
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for each detected CS component, where 
2

2fl flp  X  and 

2

2fh fhp  X  are low-frequency power and high-frequency 

power, respectively. Of course, R for S1 is much larger than 
that for S2. 

 
Fig. 2. An example of amplitude spectrum of CS components, where the 
upper figure shows S1 and the lower figure shows S2. 

 

With the aid of R , the unclassified CS components now 
can be identified by using the following criterion: 
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where 
1R  and 

2R  are the average of Rs corresponding to the 

preliminary identified S1 and S2, respectively, and 
1H  and 

2H  denote that the unclassified CS component are identified 

as S1 and S2, respectively. 

The localization result can be amended after all CS 
components have been identified. The main task is to localize 
the missed partner of the CS component identified using (6) in 
the same CS cycle. The key is using the average distance 
between adjacent S1 and S2 and the average distance between 
adjacent S2 and S1. The last procedure is to amend the range 
of each CS component. As mentioned in [11], S1 generally 
lasts for 0.14s and S2 lasts for 0.11s, and hence we amend the 
range of S1 to be 0.14s outward from the center and 0.11s for 
S2 in the same way. This range mending is useful for further 
study of separation of cardiac and respiratory signals. 

At last, HR can be easily estimated by 


160 /hr T  

where 
1T  is the average distance between adjacent S1 and S1. 

III. RESULT AND OUTCOME 

The efficiency of the proposed method is directly tested by 
data recorded using a electronic stethoscope developed by 
Mintti Medical Technology Co., Ltd., and three healthy 
subjects aged from 24 to 27 years was recruited. The data 
acquisition sampling frequency was 8 kHz and the 
auscultation position was on the left chest. The length of each 
data segment for approximate Shannon entropy calculation 
was 0.02s, and  was fixed to be 0.1. 

A. Localization Performance 

The first subject was asked to take deep breath in a quiet 
environment, and we use a short fragment (3.7s) of the 
recorded data to show the performance of the proposed 
method in this scenario, depicted in Fig. 3, in comparison with 
the method in [10]. It can be noticed that only the proposed 
method can correctly localize all the CS components and 
designate their lasting ranges. 

 



Fig. 3. Localization results for data recorded in the deep breath scenario: the 

upper figure shows the result of the method in [10], which is marked by blue 
blocks; the lower figure shows the result using the proposed method, which is 

marked by red blocks. 

 

The second subject was asked to take deep breath in a 
noisy environment, when someone aside was speaking loudly. 
A short fragment (3.7s) of the recorded data was used to show 
the performance of the proposed method in this scenario, 
depicted in Fig. 4, in comparison with the method in [10]. It 
can be noticed that even in this harsh condition, the proposed 
method can still localize all the CS components and designate 
their lasting ranges, while the compared one missed some CS 
component caused by the ambient interference. 

 
Fig. 4. Localization results for data recorded in the deep breath and ambient 

interference scenario: the upper figure shows the result of the method in [10], 

which is marked by blue blocks; the lower figure shows the result using the 
proposed method, which is marked by red blocks. 

 

Table І shows the accuracy of CS localization in three 
scenarios for normal breathing, deep breathing in quiet 
environment and deep breathing in noisy environment, by 
using longer recorded data. The proposed method has much 
better localization performance compared with the method in 
[10], especially when the CS signal is interfered by RS signal 
or ambient noise. The proposed method achieves 100% 
localization accuracy in normal breathing. Though its 
performance will degrade by interference, it still has 97.2% 
localization accuracy even when interfered by both RS signal 
and ambient noise. 

TABLE I.  LOCALIZATION ACCURACY IN VARIOUS SCENARIOS 

 

 
 

Experimental scenario 

 

Total 

number of 

CS 

components 

Rate of correct 

localization 

Method 

in  [10] 
Proposed 

method 

normal breathing 435 98.4 % 100 % 

deep breathing in a 

quiet environment 

552 88.2 % 99.8 % 

deep breathing in a 

noisy environment 

392 72.2 % 97.2 % 

 

B. HR Estimation Performance 

The data recorded from the third subject lasts 14s, and is 
used to verify the efficiency of HR estimation from the 
localization and identification results.  

Firstly, the subject was asked to take deep breath in a quiet 
environment without a break. The following figures show the 
localization result and HR estimation result for this data. HR 
was estimated to be 0 at first because that the estimation of 
HR needs at least two whole CS cycles. Fig.5 shows the 
location results of the method in [10], where some of the CS 
components were not located, which affected the estimation of 
HR in the lower figure of Fig.5. Fig.6 shows the result of the 
proposed method, where it can locate the CS components 
completely and improve the accuracy of HR estimation. It is 
interesting to notice that the fluctuating HR was well 
consistent with respiration. 

 
Fig. 5. Results of CS localization and HR estimation by the method in [10] in 
a deep breath scenario: the upper figure shows the localization result, the 

lower figure shows the result of HR estimation. 

 

 
Fig. 6. Results of CS localization and HR estimation by the proposed method 

in a deep breath scenario: the upper figure shows the localization result; the 

lower figure shows the result of HR estimation. 
 

Secondly, the subject was asked to take normal breath in a 
quiet environment, while after a certain time duration the 
electronic stethoscope was removed from the auscultation 
position for about 3s and then put back to the previous place. 



Fig. 7 shows the localization result and HR estimation result 
for this data. It was shown that the CS localization and HR 
estimation still worked for this particular auscultation 
interruption and resuming scenario. When the electronic 
stethoscope was removed the HR estimation quickly fell to 
zero, while when resuming auscultation the localization and 
HR estimation quickly recovered. It can be noted that it does 
not affect the calculation of the heart rate in the proposed 
method when there is a pause in the procedure of auscultation. 

 
Fig. 7. Results of CS localization and HR estimation by the proposed method 
in a normal breath scenario with a 3s interruption: the upper figure shows the 

localization result; the lower figure shows the result of HR estimation. 

 

IV. CONCLUSION 

A CS component localization and identification method, 
together with HR estimation, has been proposed. The 
approximate Shannon entropy was used to roughly localize the 
CS components in real time. By calculating and comparing the 
ratio of low-frequency power to high-frequency power for 
each CS component, the rough CS localization results was 

identified and amended. HR estimation was derived from the 
amended localization results. Experiments performed in 
various real scenarios verified the efficiency of the proposed 
method. 
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